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MANETs

• Mobile Ad hoc  NETworks 

- Mobile nodes communicate using wireless links

- Nodes can join or leave the network any time

- Limited resources: Energy and computing
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MANETs vs. Sensor Nets

• Base station central 
point of trust

• Data aggregation

• Limited computing, 
memory and energy

• Large scale, 
redundancy
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Uses of MANETs

• Where infrastructure cannot be deployed, 
must be deployed rapidly, or is at risk

- military/tactical networks

- disaster response

- certain rural environments
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Security in MANETs
- Lack of clear line of defense

• Mobile nodes function as routers

• Wireless channel accessible to both legitimate nodes and 
attackers

• Many MANET protocols assume trusted and co-operative 
environment

- Routing: AODV, DSR

- MAC: 802.11

- Compromises and physical capture

- Resource constraints

- Node mobility
6
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Security in MANETs

- Routing attacks

• misbehaving nodes may attract traffic to see, modify 
or drop it

- Denial of service attacks

• radio interference

• network congestion

• packet dropping

- All other network attacks apply
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Securing MANETs
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Key management

• Many attacks prevented using cryptographic 
means

• Require scalable key management solution

- Public key

• Problem: Availability of CA

- Symmetric keys

• Requirement for sensor networks
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Public key distribution
• Problem: Availability of CA

• Solutions

- Threshold cryptography [Zhou, Haas, Network 1999]

• Divides the private key into n shares (s1,s2,…,sn)

• (t+1) parties can perform operation, t parties cannot; n ≥ 3t+1

- Distributed [Hubaux, Buttyan, Capkun, MobiHOC, 2001]

• Users issue their own certificates; trusts limited number of other 
certificates

• When two users want to communicate, merge the certificate 
repositories and find a certificate chain
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Key management in sensor networks

• Challenges

- Public key system impractical

- Vulnerability of physical capture

- Lack of a-priory knowledge of deployment configuration

- Limited resources

• Key types [Zhu, Setia, Jajodia, CCS 2003]

- Individual key shared with base station

– pairwise key shared with another sensor node

- cluster key shared with multiple neighboring nodes

- group key shared by all the nodes
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Key pre-distribution
• Problem: Not enough space to store pairwise keys for all 

possible neighbors

• Solution

- Pre-distribute random subset of keys [Eschenauer, Gligor, CCS 2002]

- Pairwise key between the nodes if they share any of those keys

- Multi-path key establishment for neighbors not sharing keys

- Q-composite random key pre-distribution [Chan, Perrig, Song, S&P 
2003]

• Require q common keys from the key ring for a pair of nodes

- Polynomial pool-based key pre-distribution [Liu, Ning, CCS 2003]

• Uses pool of randomly generated bivariate polynomials

• Each node gets a subset of key share
13
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Key pre-distribution scheme (cont.)
• Blom’s key pre-distribution scheme

- G:[λ+1,N] matrix, D:[λ+1,λ+1], A=(D.G)T

- kth row of A and kth column of G  stored in node k 

- K = A.G, key matrix; λ- secure

• Multiple-space key pre-distribution scheme [Du, Deng, Han, Varshney 
CCS 2003]

- Generate w key space (D1,G), (D2,G)…(Dw,G)

- A node gets T subset

- Better resilient than previous schemes

• Integrity (I)-codes based on physical layer [Cagalj et. al., S&P 2006]

- Assumption: Cannot change 1 to 0 by the attacker

- Can detect 0 to 1 change by coding
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Securing Data
• µTESLA: Authenticated broadcast [Perrig, Szewczyk, Wen, Culler, Tygar, 

Mobicom 2001]

- Delayed disclosure of symmetric keys

- Requires loose time synchronization and authenticated key-chain 
commitment

- Each key is a key in hash chain

• Time synchronization [Sun, Ning, Wang, Liu, Zhou, CCS 2006]

- Pairwise time synchronization

• Shared nature of wireless medium calls for recording the time only when the packet 
is guaranteed to leave

• MAC computation at line rate

- Global time synchronization

• Based on pairwise synchronization

• Need to be resiliant against compromised nodes

• Authenticated local broadcast using µTESLA
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Securing Data (cont.)
• Problem: Compromised sensor nodes may introduce false 

data 

• Solution

- Hierarchical aggregate computation [Chan, Perrig, Song CCS 2006]

• Aggregation commit phase: Each node commits to the results obtained from 
its children

• Result checking phase: Each node can verify that their result was taken by 
the parent

- False data injection [Zhu, Setia, Jajodia, Ning, S&P 2004]

• Compromised node can inject false data; detect upto t compromised 
nodes

• At least t+1 nodes need to agree on a reading
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MANET routing protocols
[Milanovic, Malek, Davidson, Milutinovic, Computer 2004]

• On-demand routing algorithms

- Dynamic source routing (DSR)

- Ad hoc on demand distance vector routing (AODV)

• Link state algorithms

- Optimized link-state routing (OLSR)

- Topology broadcast based on reverse-path forwarding 
(TBRPF)

• Hybrid approach

- Discovers route only when needed, but use multipoint relays

- Master, gateway and plain nodes
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Routing Attacks

• Forge initiated routing packets

- Cannot be detected using cryptographic techniques

- IDS (e.g., DMEM) can detect it

• Forge forwarded routing packets and node identity

- Cryptographic techniques can detect it

• Drop forwarded packets

- Can be detected by sender based on acknowledgements

- Reputation-based mechanisms
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Routing Attacks (cont.)
• Rushing attacks

- The attacker forwards the ROUTE REQUEST more quickly than legitimate nodes

• The route is discovered through the attacker

• Worm hole

• Black hole

• Ad Hoc Flooding Attack (AHFA) 

- Attacker broadcasts mass route request packets

• JellyFish [Aad, Hubaux, Knightly, MOBICOM 2004]

- Targeted against closed-loop flows such as TCP

- Conforms to all routing and forwarding specifications

- Reorder attacks

• Delivers all the packets, but after placing them in reorder buffer

- Periodic dropping attacks

• Drop all packets for a short duration once per RTO

- Delay variance attacks
21
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Routing Security

• Ariadne [Hu, Perrig, Johnson, MOBICOM 2002]

- Based on DSR (dynamic source routing)

- Uses TESLA, digital signature or pairwise keys for 
authentication

- Route discovery

• Target authenticates Route Requests using MAC

• Initiator node verifies the reply using MAC 

- Route maintenance

• Route error messages are authenticated

22
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Preventing Routing Attacks

• Rushing attacks prevention [Hu, Perig, Johnson, WiSe, 2003]

- Secure neighbor detection

- Each node collects a number of REQUESTs and forwards one

• Flooding Attack Prevention (FAP) [Yi, Dai, Zhang, Zhong, Int. J. of 
Info. Technology, 2005]

- Neighbors of attacker records the rate of route request

- Denies the requests after threshold is reached

- Easy to break the scheme, if the attacker pretends the request 
is a forwarded request!
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Preventing Routing Attacks (cont.)

• Wormhole attack prevention [Hu, Evans, NDSS 2003]

- Directional antennas: Divides the region into 6 zones

- Directional neighbor discovery

• A hears B from the opposite zone of B hears A

• Cannot detect wormhole if nodes are in opposite zones relative to worm 
hole end points

- Verified neighbor discovery protocol

• A verifier V can verify the link A link

- zone(B,A) != zone(B,V); zone(B,A) != zone(V,A)

- Strict neighbor discovery

• Above scheme fails if A & B are unable to communicate, but close enough 
to have a verifier that can communicate with both A & B

- Zone(B,V) cannot be both adjacent to zone(B,A) and zone(V,A)
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Transport for Mobility
• Network and transport layer solution for multi-homing 

and mobility [Nikander, Ylitalo,Wall, NDSS 2003]

- IP address has dual role host identity and topological location

• Security problems with multi-homing and mobility

- Address stealing

- Address flooding

• Proposed solution 

- Host Identity Protocol (HIP): cryptographic namespace and protocol 
layer between network and transport layer

- Packet forwarding agents: Forwards packets sent to a given IP 
address to another IP address
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IDS Architecture
• IDS Requirement

- Distributed, without centralized point

• Needs practical and scalable approach to gather evidence from other nodes

- Links are much more unreliable

- Limited bandwidth and computing power

• Solutions

- Local intrusion detection architecture (LIDS) [Albers et. al., WIS, 2002]

• Different LIDS exchange security data and intrusion alerts

• Audit data: SNMP MIBs

• Use of mobile agents to do specific mission in autonomous and asynchronous manner

- Distributed IDS Architecture [Zhang, Lee, Mobicom 2000]

• Local detection engine: input from local data collection

• Cooperative detection engine: input from neighboring nodes
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Routing attack detection
• Routing Attack detection based on specification

- Based on extended finite state automation (EFSA)  of AODV [Huang, Lee, RAID 2004]

• Detects invalid state, transition and action violation

- DMEM for OLSR [Tseng, Wang, Ko, Levitt, RAID 2006]

• Detection by validating the consistency among related routing messages

• Example: Neighbors in Hello messages must be reciprocal 

• Intrusion response [Wang, Tseng, Levitt, Bishop, RAID 2007]

- Topology dependency index (TDI)

• Number of nodes that cannot be reached without the attacker

- Attack damage index (ADI)

• Number of nodes to which the routing has changed after attacks

- If TDI = 0 or ADI > 2 TDI  Isolate attacker

• Model the attacks on AODV protocol using attack tree [Ebinger, Bucher, LNCS, 2006]

- Greatest damage from black hole or wormhole; Easy to perform rushing and Sybil
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Compromised/Selfish node detection
• Tamper resistant hardware

• Node replication attacks [Parno, Perrig, Gligor, IEEE S&P 2005]

- Replicas of a compromised node planted in the network

- Neighbors forward the location claim of a node to randomly selected 
witnesses

- High probability of collision (birthday paradox)

- Lower overhead if the intermediate routers also acts as witnesses

• Reputation mechanism [Jaramillo, Srikant, Mobicom 2007]

- Co-operation induced by threatening partial or total disconnection

- DARWIN: Avoid retaliation after a node has falsely perceived as selfish; 
cooperation restored

• Modeled after game theory

• Player that has better standing should proportionately punish its opponents with 
the difference in the two standing instead of absolute standing of its opponent.

• Collusion resistance
31
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Other attack detection

• Secure implicit sampling (SIS) [McCune, Shi, Perrig, 
Reiter S&P 05]

- Detection against denial of broadcast messages

- Elicits authenticated acknowledgements from subset of 
nodes unpredictable to attacker

- If number of ACKs received is less than a threshold of 
expected, there is attack

• ACK not received either due to packet loss or due to attack

32
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Related work: 
network capabilities

• Capability implemented in early computer 
systems (1984)

•  “visas” for packets (1989)

• Network capabilities to prevent DoS in wired 
networks (2003)

- Capability assigned by receivers

- Links in the path between a sender and receiver 
cannot be snooped

33
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What can we do?

• For open environments: tomorrow

• For closed (e.g., military) environments:

- redesign network from scratch

- Policy enforcement framework

- Distributed Enforcement:  all intermediate nodes 
enforce the capability policy

34
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Securing MANETs
• Firewalls keep away malicious traffic from set 

of nodes

• Placed on the perimeter, enforcing policy

- Nodes inside trusted; outside potential enemies

• MANETs have no well-defined perimeter
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Distributed Firewalls

• Traditional Firewalls: broken assumptions

- Inside trusted, outside untrusted

- Machines require uniform external access
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Distributed Firewalls

• Traditional Firewalls: broken assumptions

- Inside trusted, outside untrusted

- Machines require uniform external access

• Policy centrally defined; Enforcement at end hosts

• Distributed firewalls sufficient for MANETs?

• No protection of network bandwidth

• No limit on amount of service access

• No protection of routing protocols
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Distributed Enforcement

• Capability:  access rules and bandwidth 
constraints represented using capabilities

• Deny-by-default:  every packet in the network 
need to have an associated capability

• Unauthorized traffic dropped closer to the 
source

• Protects end-host resources and network 
bandwidth
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DIPLOMA
• DIstributed PoLicy enfOrceMent Architecture for 

MANETs

• Enforcement done at all nodes

• Access and bandwidth control

• Capability based access control

- Useful for highly dynamic environments

• Nodes participating not known in advance

• Same IP may be assigned to multiple nodes

- Rule update does not require populating to all the nodes

- Prevents source address spoofing
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DIPLOMA 
Components

• Policy language for access control and 
bandwidth access

• Rules and algorithms for deriving new 
policy

• Protocol for communication of policy

• Enforcement of policies
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Capability
• Access control and bandwidth limitation represented 

using capability (KeyNote [BFIK99])

- Identity of the principal

- Identity of the destination

- Type of service and bandwidth

- Expiration date

- Issuer & Signature

• Policy tokens

- Issued by the administrator

• Network capability

- Issued by the receiving node
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Policy Token Example
serial: 130745
owner: unit01.nj.army.mil (public key)
destination: *.nj.army.mil
service: https
bandwidth: 50kbps
expiration: 2010-12-31 23:59:59
issuer: captain.nj.army.mil
signature: sig-rsa 23455656767543566678
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Network Capability 
Example

serial: 1567
owner: unit01.nj.army.mil (public key)
destination: unit02.nj.army.mil
bandwidth: 150kbps
expiration: 2009:10:21 13:05:35
issuer: unit02.nj.army.mil
comment: Policy allowing the receiver
to issue this capability.
signature: sig-rsa 238769789789898
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Protocol
• Capability associated with each communication session

- Transaction identifier and signature

• Capability Establishment

- Source node informs the intermediate nodes about 
transaction identifier, capability and key for signature

• Smaller keys used for per packet signature

• Sender

- Adds transaction id, sequence number and signature to the 
packet

• Intermediate nodes and Receiver

- Verifies the packet (probabilistically) for signature and 
bandwidth
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System Architecture
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Capability Establishment
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Data Transfer
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Node State
• Capability Table (intermediate nodes)

- Sessions passing thru the node

• Transaction Table (sender)

- Sessions initiated by the node

• Issue Table (receiver)

- Network capabilities issued by the node

• Policy Table (sender)

- All the capabilities available to the node
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Node Operations - Sender
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Node Operations - Sender
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Node Operations – Intermediate Node
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Node Operations - Receiver
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Routing Traffic

• Attacks can be launched using routing 
traffic alone

• DIPLOMA limit the number of route 
requests

- Allow route request only the node has capability

- Limit the number of route request per capability
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Multicast Traffic
• Multicast Policy Tokens (MPT)

- Contains multicast group and bandwidth allowed

• DIPLOMA enabled On Demand Multicast Routing Protocol 
[LSG00]

- Join Query and Join Reply has MPT
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Challenges

• Route Change

• Selfish Nodes

• Capability Misuse

• Bandwidth Allocation
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Route Change
• Frequent route change in MANET due to mobility

• New intermediate node get state update from 
upstream node

- Changes localized
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Selfish Nodes

• MANET requires co-operation of nodes

- Routing protocols

- Packet forwarding

• DIPLOMA requires

- Signature verification

• Reward and punishment model to ensure 
co-operation [JS07]

- Nodes forwarding too many packets with wrong 
signature is selfish
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Capability Misuse
• Nodes may reuse the same capability for 

multiple sessions

- Consolidated capability

- Multiple disjoint paths

• Distributed IDS to detect it [ZL00]

- Require minimum amount of data exchange

• Capability bandwidth divided into buckets

- Bitmask intersection to detect the reuse
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Resource Allocation

• Policy tokens at hosts  Access control

• Network capabilities  Bandwidth

- Allocated by the receivers according to the 
policy tokens they have

• How to allocate the bandwidth in the 
policy?  
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Feasibility
• Memory and CPU per packet high in 

MANETS

- Technology trend: Faster and more power 
efficient processors

- iPhone: 624 MHz Arm-11 processor, 128 MB 
RAM

• Threat Model and Security Analysis

• GloMoSim Simulator

• Orbit Lab Testbed
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GloMoSim
• Global Mobile Information 

System Simulator

• Discrete event simulator 

• A layered approach – 
communication using APIs

• Added DIPLOMA layer

- Process protocol packets

- Capability establishment and 
enforcement

- Bandwidth enforcement

- Supported packet processing 
delay
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GloMoSim
• Global Mobile Information 

System Simulator

• Discrete event simulator 

• A layered approach – 
communication using APIs

• Added DIPLOMA layer

- Process protocol packets

- Capability establishment and 
enforcement

- Bandwidth enforcement

- Supported packet processing 
delay

DIPLOMA
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Parameters of Interest

• Latency of packets

- Time taken for a packet to reach from a source 
to destination

- First packet latency, Average latency

• Throughput

• Packet Delivery Ratio (PDR)
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Input Parameters
• Radio range = 377m, link bandwidth = 2 Mbps, 802.11 

MAC

• Packet processing time = 0.01 mS (equavalent to 
100Mbps for 128 B packets)

• Database: insertion = 0.01 mS, lookup = 0.005 mS

• 1024 bit RSA for capability

- Signature 3.159 mS, verification 0.140 mS

• 256 bit for packet signature

-  Signature 0.168 mS, Verification 0.0275 mS
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Latency of first packet

• Capability establishment, database lookup, signature 
verification, larger header (36B)

• Overhead (35.8 mS, 41.6 mS, 60.9 mS) – About 20.5%

• Line topology 
(node distance = 
200 m)

• CBR 512 B

63
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Average Latency

• Database lookup, signature verification, larger header (36B)
• Overhead (0.6 mS, 1.2 mS, 1.6 mS) – About 8%

• Line topology 
• CBR 512 B, 100 

mS, 1000 pkts

64
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Throughput (CBR)

• Throughput overhead: 2%  lower for our scheme

• Line topology 
• CBR 1400 B,    1 

mS

65
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Throughput (FTP)

• Throughput overhead: 5.3%  lower for our scheme

• Line topology 
• 10 FTP files
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Route Change

• Original Drops: 108mS worth of traffic
• Our scheme: 155mS

• Line topology 
• CBR 512 B,    

1000 pkts
• Path length: 3
• Route change at 

0.5 S
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Mobility on Grid

• PDR overhead: 1.6% (50mS), 9.14(25mS) lower for our 
scheme

• Random topology: 
50 nodes, 
1200x1200m grid

• CBR 256 B
• 5 pairs of traffic
• Random way point 

mobility
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Resilience against misbehaving nodes

• S1-D1: CBR 512B, 40mS

• S2-D2: CBR 512B, 20mS

• S3-D3: CBR 512B, 10mS
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Resilience against misbehaving nodes
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Orbit Lab

• 400 nodes with 802.11 radios

- 20x20 grid, node 1 m apart

• 2 node sandboxes for testing

• Framework to install and save the images

• Ruby scripts to install, run experiments

• Multi-hop achieved through MAC filtering
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Linux Implementation
• Without changes to any application

• Implementation using netfilter queue

• iptables gives the packet to user level daemon

• Outgoing Packet

- Establish capability if first packet

- Add transaction id, seq. number, signature

• Transit Packet  Validate the packet

• Received Packet

- Packet verification

- Strip the capability headers

• Change MTU size to avoid fragmentation
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Implementation
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Orbit Lab

• 400 nodes with 802.11 radios

- 20x20 grid, node 1 m apart

• 2 node sandboxes for testing

• Framework to install and save the images

• Ruby scripts to install, run experiments

• Multi-hop achieved through MAC filtering
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Topology
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TCP throughput
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UDP throughput
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Throughput
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FTP throughput
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Attack resilience 
(local attacker)
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Attack resilience 
(distant attacker)
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Other experiments

• Similar experiments for multicast

- different topologies, streaming audio/video applications

• Capability misuse detection based on distributed auditing

• However, static topologies

- challenge: introducting (experimenting with) realistic 
mobility

• mechanism? model?

• What about policy generation?
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Summary

• MANETs are an interesting problem domain

- resource constraints, trust model, operational 
environment

- clean-slate vs. add-on security?

- realistic experimentation is challenging
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